Approximation of partial differential equations on compact resistance spaces

نویسندگان

چکیده

Abstract We consider linear partial differential equations on resistance spaces that are uniformly elliptic and parabolic in the sense of quadratic forms involve abstract gradient divergence terms. Our main interest is to provide graph metric approximations for their unique solutions. For families with different coefficients a single compact space we prove solutions have accumulation points respect uniform convergence space, provided remain bounded. If sequence converge suitably, along subsequence. special case local finitely ramified sets also sequences approximating set from within. Under suitable assumptions (extensions of) linearizations accumulate or even subsequence solution target equation set. The results cover discrete approximations, both discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES

In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via  weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Projection-free approximation of geometrically constrained partial differential equations

We devise algorithms for the numerical approximation of partial differential equations involving a nonlinear, pointwise holonomic constraint. The elliptic, parabolic, and hyperbolic model equations are replaced by sequences of linear problems with a linear constraint. Stability and convergence hold unconditionally with respect to step sizes and triangulations. In the stationary situation a mult...

متن کامل

Approximation of linear quadratic feedback control for partial differential equations

Algebraic Riccati equations (ARE) of large dimension arise when using approximations to design controllers for systems modelled by partial differential equations. We use a modified Newton method to solve the ARE that takes advantage of several special features of these problems. The modified Newton method leads to a right-hand side of rank equal to the number of inputs regardless of the weights...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2021

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-021-02119-x